

Reactive Planning in a Fully
Embodied Robot Arm

An honors project in Computer Science

By Daniel C. Churchill

Advised by Susan Fox

Macalester College

May 5, 2000

 Abstract:

 This paper describes the application of reactive planning techniques for

controlling the motion of a two-dimensional robot arm, given the objective of finding and

touching a light source. I compare reactive planning techniques with “traditional”

artificial intelligence planning techniques, which historically have been unacceptable for

operation in real-world environments. I present examples of systems that are essentially

a hybrid mixture of traditional and reactive techniques. Finally, I describe the

implementation of pure reactive planning on a robot arm controlled by a single Handy

Board 68HC11-based controller. The results show that reactive planning is a viable

alternative to traditional planning.

Acknowledgements

This project has been a long and somewhat arduous journey for me. And,

considering that it will likely be sometime before I have the opportunity to make a

statement like this again, assuming that I ever do, I want to recognize the people who,

whether realizing it or not, have helped me along the way.

First and foremost, I want to thank my adviser, Susan Fox, for her patience in

dealing with my tendency to procrastinate, and for all her help and suggestions along the

way, most of which found their way into this project in some form or another. I would

also like to thank my second and third readers, Dick Molnar and Tom Halverson, for

their willingness to take the time to read and critique my work. Additionally, I would like

to thank Jim Doyle in the Physics department, for letting us amateurs play with the

soldering iron in the digital electronics lab when my sensors needed longer wires.

 I want to thank my family and friends for their continued support and

encouragement over the past two semesters: Mom and Dad, for providing a little extra

money this year so that I didn’t need to devote as much time to working for pay; the

Vortex, for just being the Vortex; Molly for being the one who set an example work ethic

that I should have followed, but didn’t; Lynn for helping me to keep my priorities straight

and for praying for me; TJ for his wacky commentary, as well as his prayers; Deb

Kerkvliet for encouraging me through her own experience to not give up when deadlines

seemed impossible to meet; Mikkel and Vivek for always being around to remind me that

I wasn’t in any worse shape than any other honors student in the Computer Science

department; Toni at the Macalester switchboard for her role as “surrogate mother,” as

well as the rest of the crew in CIT; and any others who at some point said an

encouraging word – you are too numerous to mention, but you know who you are.

Finally, I have one more acknowledgement, and that is to God, for seeing me

through the long hours when no one else was awake, and for walking with me through

the easy times, and carrying me in the difficult ones. To Him be all thanks and praise.

- DC

1

1 Introduction
This project grew out of a tour of the local Ford Motor plant in St. Paul as part of a

managerial accounting course. Though it had nothing to do with what we were there for,

I was struck by the complexity of the many robot arms that were in use in the plant for

the various stages of building Ford trucks. It was obvious to me that a human somewhere

had carefully programmed the arms; every motion, no matter how complex, was designed

and performed with extreme precision. Welds that would be useless if the arm had been

positioned even a millimeter one way or the other were performed perfectly time and

again. Of course, these arms also had one other glaring characteristic: they were dumb.

The only reason that they made those welds with such precision was that they had been

programmed and calibrated to be exactly where they were, and the vehicle on the

conveyor belt had been placed and held there with equal accuracy.

This illustration of industrial robots in action started me thinking about how much

more effective such systems could be if they were able to exhibit intelligence, even on a

level that might be called trajectory error-correction. In the case of the Ford plant, an arm

coming toward a vehicle that was slightly misplaced on the conveyor could still be

welded perfectly if only it were able to sense where the joint was and adjust its position

accordingly. Of course, like nearly everything else in artificial intelligence, making that

adjustment is far more difficult than it would at first seem that it should be. This paper

compares and contrasts the two major approaches to planning: Sense-Model-Plan-Act, or

SMPA, (commonly referred to as “classical planning”) and a newer method called

Reactive Planning.

The remainder of this paper discusses the implementation of a reactive planning

system on a two-dimensional robot arm constructed of Lego blocks.

2 Background
As mentioned above, there are two main approaches to planning: Sense-Model-

Plan-Act (SMPA) and Reactive Planning. SMPA is a much older approach, and is

therefore frequently referred to as classical planning. In this model, the computer

2

typically has a complex internal representation of the world. It generates the plan within

this representation, and then issues the motor commands to get the robot to affect its

world. Reactive planning systems have no complex internal representation of the world,

though they may retain some state information. Its actions are based purely on the

current state of its sensors and any internal state that the robot may be keeping.

Given these basic definitions, we can look at each planning framework more in-

depth.

2.1 Sense-Model-Plan-Act Framework
The history of planning in artificial intelligence has tended to focus on getting the

computer to reason out a solution for achieving a goal (Brooks 5). The emphasis has

been placed on creating techniques for getting the computer to actually “think up” a

solution. In particular, a common assumption was that getting the actual robot to perform

the action was an engineering problem completely independent of planning the action.

This plan of attack resulted in the creation of systems that first needed to generate

some sort of internal representation of the space in which they existed, then execute some

sort of planning algorithm based on the state of that representation, and finally carry out

the plans in the actual world. The STRIPS planner, used on Stanford Research Institute’s

Shakey is a prime example of just such a system. Shakey used a black and white

television camera as its primary sensor, with image processing occurring on an offboard

computer to convert the visual data to a first order predicate calculus model of the world.

STRIPS then worked on this model and the plans were translated into calls to “atomic

actions in fairly tight feedback loops,” (Brooks, 8).

In at least some cases, researchers did not have the funding to create an actual robot.

This resulted in the creation of simulators, which basically took into account only the

execution of the planning algorithm. The results of the plan could only be applied to the

internal representation, so there was no need for the conversion from a real-world

situation to the internal representation. Nor was there a need to execute instructions to

have motors move the robot to the state specified by the plan. Typically, this type of

research relied on experimental results that demonstrated the feasibility of the input they

3

assumed was available and the actions they expected the system to be capable of. An

example of this is the work of Terry Winograd, who created programs to work in the

blocks world after Patrick Winston had purportedly shown that it was possible for a

system to perceive and manipulate such a world (Brooks 9).

Researchers working with the SMPA model addressed the problem of

environmental modeling in two ways. The first was to assume a static (or mostly static)

environment. The logic behind this decision was that current computers could render a

representation of a static environment. Since computers of the future were continuing to

get faster, it was felt to be only a matter of time before computers would be fast enough

to perform enough static renderings in such a small amount of time that you could use

them in a dynamic environment.

The second method for dealing with the computationally expensive environment

rendering operation was to use off-board computers. This allowed the most powerful

computers to be used. Thus, on-board computation was basically reduced to the

collecting and sending of sensor data to the mainframe and the receiving and issuing of

motor commands, as the majority of this research was done in mobile robotics. However,

despite the use of the most powerful computers available and a robot situated in a static

environment, SMPA systems still performed “excruciatingly slowly” (Brooks 2).

 The major problems with the SMPA framework can be summed up as follows:

• Sensing, modeling, and affecting the environment are hard and

computationally expensive (Brooks 2). A robot that is trying to respond to its

environment in real time would have to update its model continuously, requiring

tremendous amounts of computation, and in all but very specialized cases, on-

board computation. In most cases, this computation is unnecessary, as the system

is only concerned with a certain small portion of its environment, much as the

human eye only “sees” a small portion of the entire field of vision. Similarly,

changing a desired outcome into effector commands is an uncertain process due to

the imperfection of servomotors, etc.

• SMPA suffers from the horizon effect (Brooks 3). The algorithms that SMPA

uses are most-frequently based on traditional AI techniques, such as state space

4

search or problem decomposition (e.g. see chapters 11 and 12 of Russell and

Norvig). While these algorithms are extensively researched and in some cases

can be highly optimized, they make assumptions, see Table 1 below, that are very

unrealistic for a robot acting in a real environment. The bottom line is that no

matter how fast the processors of the future become, the basic limitations of

SMPA will not be overcome. To render a system in operable simply requires

situating the robot in an environment that is too complex and/or dynamic to allow

an SMPA system to keep up.

2.2 Reactive Planning
Classical planning systems were virtually the only type of planning system that was

in use up until the mid to late 80's. At this time, Rodney Brooks developed the

subsumption architecture, which set up various different “behaviors” that were achieved

by performing actions based upon sensor input, and possibly a small amount of internal

state information. It is these behaviors that form the heart of the reactive planning model.

Behaviors ideally are very simple responses to various input states. An example of a

simple behavior, in the context of a mobile robot, might be to turn to the left as the result

of running into an object that triggered a sensor on the right side of the robot.

One of the key principles of reactive planning is that by combining enough simple

behaviors together, complex responses to the environment will emerge from the robot’s

interactions with the world (Brooks, 3). It is through these interactions with the world

that the intelligence of the robot will (or will not) emerge. The idea here is that the

intelligence of the robot comes not from the method that it used to determine its actions,

but from the results that those actions achieved in the world. Essentially, this is the key

difference between reactive and classical planning, which relies on a more purely

intellectual solution provided by a resolution theorem prover or some other method.

Following from this principle that reactive planning displays intelligence through its

interaction with the world is the principle that it must be a fully embodied system. The

main argument here is that it is impossible to have a system that is responding to world

unless it has a body for the world to act on and to respond to the world with. In

5

particular, simulated systems will not do, because it is impossible to truly represent the

idiosyncrasies of the world in a simulated system.

In Brooks’ research, the combination of behaviors was achieved using

combinatorial circuits connected to a multi-layered network. This network was designed

in such a fashion as to filter incoming sensor information and produce a combination of

behaviors (Brill 7). Brooks’ approach came to be known as reactive planning. The

resulting system maps input to output, where the output can be modified by the internal

state.

We can talk extensively about the characteristics of reactive planning, but an exact

definition is difficult to pin down. For example, it is somewhat debatable whether a

system should be called a reactive system if it maintains internal state, since it then is not

acting solely on sensor information. I would suggest that the following characteristics are

the two that are most important for distinguishing a reactive planning system from a

classical planning system:

• The system should not be concerned with maintaining a specific model of the

world as is done in the SMPA method, but it may have state (Brooks 17).

• The system needs to be able to deal in and with the real world. This means

that the system must be embodied, because it must be able to effect change in its

world, not just in an abstract internal representation (Brooks 3).

2.3 SMPA and Reactive Planning in an Example
Suppose that we have an arm consisting of two segments, functioning within a

plane, as shown in Figure 2-1 on the next page. The goal of the system is to move the

arm from its original position to the final position, touching the goal, represented by the

large dot.

2.3.1 SMPA in the Example
 The first thing to note about SMPA is that it would maintain an explicit

representation of the arm’s world. In this case, it could be as simple as representing

objects by their location in the coordinate plane. SMPA would start by taking a sensory

reading of its environment and mapping it into this representation. For this example, let’s

assume that the arm has some type of ranged sensor, perhaps visual input from a camera

6

or sonar readings. Presumably the arm has sensors, which allow it to know its precise

position.

After the SMPA system has put this information into its world model, it will

execute some sort of planning algorithm. This could be something like state space

search, where it would look at all the possible actions it could take and evaluate the

results of each, choosing that which best satisfies the desired goal. Assuming that some

sort of planner is in place that can do this, the design of which is difficult in its own right,

the system is going to return a set of actions for the arm to take.

In this case, those actions are to rotate the base joint A degrees counterclockwise,

and to rotate the outer joint B degrees counterclockwise. The final step is to map the

planner’s output to actual commands, which will cause motors to run just the right

amount of time and in the right direction to get them to move the arm precisely to the

desired location.

Now let us evaluate where problems could occur in this sequence of events. The

first problem is that the planner is assuming the sensory input was perfect. This may be

the case, but in most situations, sensors are not this accurate. So, the first problem is that

Figure 2-1 Example of the desired motion of a two-dimensional arm.

Goal

Original
Position

Final
Position

A

B

7

the goal probably isn’t quite where we think it is, even though we have to assume that it

is for purposes of planning our moves.

Another problem is that the translation from the sensor readings to the world

representation needs to be fast. As mentioned before, in a real-world environment, this is

not necessarily (as well as necessarily not) the case. This means that it is going to take

longer for the system to come up with a plan, and in that time, it’s possible that

something other than the arm has changed the world. Thus, the assumption that we’re

making here is that the only thing affecting the world of the robot is the robot itself.

The final problem that I will mention with regards to SMPA in this example is that

it assumes the mapping from desired output to motor commands is efficient, and perfect.

The technology does exist that allows precise sensing of the angle that a joint is held at,

but this technology is going to cost. A system that didn’t have such sensors would have

to rely solely on timed motor commands from where it thought it was before. This is

problematic at best, because motors are physical devices, and their exact output in a given

time period may change depending on such factors as the weight of the arm, the level of

charge in the system’s batteries, etc.

The bottom line is that SMPA is plagued by problems associated with assumptions

that it makes regarding what it knows about the environment. This is a very simple world

model, a very simple set of possible actions, and so on. Even given this simplicity, the

SMPA model of planning has many shortcomings that make its use in such an

environment nearly impossible.

2.3.2 Reactive Planning in the Example
Reactive planning, on the other hand deals quite well with most of the problems that

SMPA has. In our example, the reactive planner would take a sensory reading of its

environment. Remember that it has no internal representation of that environment.

Assuming again that we have some sort of ranged sensor, the reactive planning system

would “see” that there is something resembling the goal over to the left. So, it would

immediately begin to move in that direction. However, it would be taking sensory

readings the entire time, and would adjust its movement to follow the goal, even if the

goal were to move.

8

The important

difference here is that the

reactive system has no

concept of how far it has to

move. Thus, any problems

that we may have had with

the motors not moving the

arm the expected number of

degrees is not a problem.

There is no internal

representation of the world,

so there is no problem if the

world changes during the process. As far as the reactive system is concerned, the world

is the model, and all updates to its state are implicit in the events occurring in the world.

Table 2-1 lists the major assumptions of SMPA and reactive planning. It is from

these assumptions that the shortcomings of SMPA for robotics become apparent. It is

also from these assumptions that we can see exactly why it is that SMPA tends to do well

in a completely computerized environment, where it is not unreasonable to assume that

we know all of these things.

2.4 Planning Practically – the Hybrid Approach
To this point, I have discussed the two extreme models for planning. Depending on

how well your application fits the assumptions made by each of these, a system that

implements pure SMPA or reactive planning may be the best choice. Practically

speaking, these two are often combined into a hybrid planning system that implements

some or all of the features of both methods. Though the work that goes into any of these

hybrid approaches is itself very complicated, a brief overview of a couple of approaches

that have been worked on will give the flavor of this hybrid approach.

2.4.1 Hybrid Approach 1
In his article “Design of a Reactive System Based on Classical Planning,” John

Bresina presents a system that uses the classical techniques of problem reduction and

SMPA Reactive Planning
Omniscience – the system has
complete information

Ignorance – the system has
limited information

Certainty – all information is
absolutely true

Uncertainty – sensor readings
are suspect, action may or may
not work

Consistency – none of the
information is contradictory

Inconsistency – different
behaviors have different ideas
about what to do

Sole cause of change – the
system causes all changes

Dynamic environment – the
world is always changing, not
necessarily because of the agent,
or as the agent intended

Atomic time – exactly one
indivisible action occurs at a
time

Continuous time – actions may
be aborted at any time

Table 2-1 Assumptions of SMPA vs. Assumptions of Reactive
Planning (adapted from Brill 5, 8)

9

state space search to modify current behaviors and add new ones to improve the overall

behavior of the system.

The basic idea of this work is to take the initial problem and break it down into

primitive subproblems for which a primitive reactive policy is defined. How the problem

is broken down is determined by the classical planning technique of problem reduction.

After this breakdown is completed, the primitive reactive policies for each of the

subproblems are combined to form a non-primitive reaction policy for the original top-

level problem.

The system has other provisions that allow it to do a certain amount of refining of

non-primitive reaction policies to avoid making choices that necessarily lead to failure,

but we have enough here to see the how the hybrid system is functioning. Bresina is

using the classical planning technique of problem reduction as the means to determine

what behaviors are activated. Essentially, he is using problem reduction to perform the

same function that Brooks’ multi-layered network was providing.

2.4.2 Hybrid Approach 2
Another example of a hybrid system is called Reaction-First Search (RFS). RFS

combines a reactive planner with a classical planner performing standard search space

algorithms. The main point of this system is to allow the system to start performing an

action before the search has completed (i.e. before the classical planner has been able to

develop a complete plan). This is particularly important for a situated robot that has to

start doing something before a complete plan is available.

RFS works by having the classical planner generate a partial plan from the problem

search space. The reactive planner allows this partial plan to be executed, and then uses

reactive policy to control the system. If at any time a partial plan is unavailable, the

reactive planner will do the best it can, based on its current information (Drummond,

Swanson, Bresina, and Levinson).

2.4.3 Final Comments on the Hybrid Approach
The work that is being done in the arena of hybrid planners is very complex, and

there seems to be no generally accepted best way to combine the two types of planning.

Indeed, the best way will depend on the variables involved with the problem to be solved,

10

such as the environment of the system, the information available to it, and what the

ultimate purpose of the system is. I have attempted to present a very brief overview of a

couple specific examples, yet the researchers involved in these projects would probably

shudder at the oversimplifications that I have made. Nevertheless, I think that we can get

a feel for the general approach of combining reactive and classical planning.

3 Implementing Reactive Planning in a 2D Robot Arm
The main thrust of this project was not to simply research what other people have

done in reactive planning, but to implement it on a robot arm. Unfortunately, much of

the work that is done in reactive planning is done in mobile robotics, and not in the

domain of stationary robot arms. Presumably this is because of the engineering

complexity of robot arms and the resulting difficulty and expense involved in actually

building one. Another reason could be that the technology available for robot arms, if one

is willing to spend enough, allows them to be positioned at desired angles very precisely,

eliminating much of the uncertainty with the exact position of the robot's body and

making it a less interesting case for planning research. Whatever the reason for the

scarcity of information on and designs for robotic arms, the fact remains that I could find

no inexpensive kits or designs for a robot arm. Therefore, the first part of this project

was concerned with what is basically an engineering problem − the design and

construction of a robot arm.

3.1 Design of the Arm

3.1.1 Engineering Issues
A large portion of this project consisted of the raw engineering problem of

developing a viable design for the arm. I chose to use Lego building blocks for the

simple reason that they were the only viable resource for such a task that was available to

me at Macalester College. The use of Legos required the construction of a fairly large

arm, because the motors and gears that drive the arm need a sizable frame to be attached

to. The motors themselves are relatively large, and need to be placed near the joint that

they control. The size and weight, as well as the desire not to make this strictly an

engineering project, dictated that this should be a two-dimensional arm that moves across

11

the surface of a table. I designed a basic frame that could be replicated multiple times

and connected in a chain. To keep the system complex enough to be interesting, but

simple enough to be practical, I created and connected two of these frames together. See

Figure 3-1 below.

Figure 3-1 The robot arm built for this project

3.1.2 The Controller
The arm is controlled by a Motorola 68HC11 processor, running in a Handy Board

controller developed at MIT. This controller was chosen because it was the only one

available at Macalester College. These controllers are not easily networked with one

another, so a single controller ran the arm. This board is limited to 4 motor controllers, 8

digital (i.e. touch) sensors, and 8 analog (i.e. light) sensors. This was not a limitation for

me, although in a more realistic system (i.e. a system built for an application other than

pure research, at considerably higher cost), there would be a need for many more than

this.

12

3.1.3 Sensors and their limitations
The sensors available to me for use with the MIT Handy Board were limited to light

sensors and touch sensors. I will discuss the uses and limitations of each of these below.

3.1.3.1 Touch Sensors
The arm has five touch sensors. One is located on the extreme end of the arm (see

Figure 3-5 below.) It is used to determine when the arm has achieved its goal (see “Goals

of the Arm” under “Theoretical Issues” below.) The other four sensors are split equally

between the two joints. Their purpose is to sense when either joint is bent as far as

possible to either the right or the left. These sensors provide the only sense of its own

position that the arm has. They are absolutely essential, if for no other reason than to

prevent the burn out of a motor or the self-mutilation of the arm when a joint has bent

itself as far as is physically possible. See Figure 3-2.

This provides only a bare minimum of positional sensors, and in a sense represents

the situation of operating with as little

internal state information as possible.

By including more sensors at each

joint, it would be possible to sense

certain other positions of the arm,

such as when it is halfway between its

full right and full left positions. Such

information would be useful for

providing more complex behaviors,

but is unnecessary for basic

functionality. In addition, such sensors

would have been difficult to implement on the structure I designed. Thus, I chose to go

with only two sensors at each joint, leaving myself with more limited information about

the state of the arm.

Figure 3-2 Close-up of one of the joints, showing the
touch sensor that senses motion all the way to the right.

13

Lines of
sight

Arm

Touch
sensor

Light sensor
enclosures

3.1.3.2 Light Sensors
The arm has two light sensors.

They are mounted just behind the end

of the arm and are responsible for

controlling the actions taken by the

“elbow” joint of the arm. Because of

the high sensitivity of the sensors, the

small enclosures in which they are

contained have only a small, deep hole

for light to pass through, as shown by

Figure 3-3 and Figure 3-5. This design makes the

light sensitivity highly directional, so that the

sensor can only receive light from directly in front

of it. This has both good and bad effects for how

the sensor performs. The major benefit is that it

gives definite, strong readings when a light source

is lined up in front of it. However, this is also the

greatest weakness. When the

sensor is not lined up in front

of the light source, we would

like it to have a wide

viewing area in order to pick

out the most likely direction

of the light source that we

are looking for.

In placing the light

sensors on the arm, I tried to

utilize the directional capabilities to the fullest. The sensors are placed at right angles to

Figure 3-3
Light sensor enclosure with top removed to show the light
sensor inside.

Figure 3-4 Light Sensor Placement
(view from top)

Figure 3-5 Light sensor enclosures and goal sensor

14

each other and placed behind the end of the arm so that the point where their lines of

sight cross each other is directly over the touch sensor. See Figure 3-4 and Figure 3-5.

There were several problems when dealing with the light sensors. The light sensors

used with the Handy Board cause electrical resistance when exposed to light. The board

puts a current out on one wire, and measures how much current returns on the other wire.

Thus, if the sensor is exposed to a high level of light, the Handy Board will report a

sensor reading near 0. If the sensor is in near-total darkness, it will report a much higher

value. The first problem is that this “much higher value” varies significantly from sensor

to sensor. This fact should not be allowed to cause a problem with our system, however,

since reactive planning assumes the presence of imperfect sensors (Brill 8). One of the

major challenges for a designer of a reactive system, as I discovered, was to get the robot

to function in a desirable manner even with these finicky sensors.

The other main problem with these sensors is that they are extremely sensitive.

This sensitivity has the undesirable effect of washing them out at a relatively low level of

light. The enclosure design that I have created helps with this to a large extent, but the

enclosures need to have a small opening in the back for the sensor wires, which allows a

small opening for light to seep in. In addition, the Lego blocks are made of plastic,

which, while not translucent per se, still allows a certain measure of light to seep into the

enclosure and affect the reading of the sensor. To help combat this seepage of light into

the enclosures, I found it somewhat helpful to surround the back portion of the enclosure

with a piece of dark paper.

3.1.4 Validity of Hardware for Testing Reactive Planning
In terms of the hardware used, this system is not very advanced. The sensors,

particularly the light sensors, are not very reliable, nor are they consistent with each

other. The touch sensors are not as much of a problem in terms or reliability, but they are

very limited in what they can tell you. In my case, they can only tell the system that a

joint is completely bent one way or the other.

The motors on my system are a source of some uncertainty. The Lego motors spin

quite fast, and thus it was necessary to use gearing to reduce the speed of the arm to a

reasonable rate. This is a straightforward process of having small gears drive large gears.

15

Every time there are two gears that meet, there is a small amount of give, so that a change

in direction of the arm isn’t instantaneous. Also, the arm may move different distances

depending on the charge of the controller's, how heavy the arm is, and whether it is

located on a completely level surface or not. As a result of these characteristics, timed

motor commands are virtually impossible to use, because you can never be certain how

far it has moved at a given time. The actual distance moved will depend on the

environment and the circumstances of use (e.g. has the arm been running for a long time

and worn down the batteries.)

Even though the sensors and construction of this arm are all relatively simple, it is

still entirely realistic to test reactive planning using it. This is precisely because reactive

planning is supposed to deal well with all of these issues. Its assumptions include the

expectation that sensors are going to frequently give incorrect and/or imprecise results

and that its actions may or may not be carried out perfectly or in a timely fashion.

Referring back to Table 2-1, these assumptions all fit into the uncertainty assumption of

reactive planning. Therefore, this design is not only acceptable for testing the viability of

reactive planning, but is actually desirable, precisely because a functional reactive

planning system will be able to perform acceptably in spite of these limitation.

3.2 Theoretical Issues

3.2.1 Goals of the Arm
One of the earliest decisions I had to make while designing the arm was what I

wanted it to do. The Lego blocks, processing abilities of a single Handy Board, and types

of sensors available to me (touch and light sensors) dictated that the goal of the system

needed to be fairly simple. Consequently, the goal of my system is simply to find and

touch a light-emitting object that is within its reach. The assumption of a goal is not

detrimental to the legitimacy of the reactive planning model. Brooks cites the work of

Maja J. Mataric as an example of how reactive systems can and do implement goals and

plans, even though they look nothing like the goals or plans of traditional AI (Brooks 20).

16

3.2.2 Programming issues
The programming of Handy Board controller is done in Interactive C, which is a

subset of the C programming language, augmented by motor and sensor commands, as

well as a few commands for spawning parallel processes. The Handy Board has only

32K of RAM for operating system and program code, so Interactive C offers a

necessarily small set of features. However, it was designed primarily for research, so the

features it does allow are useful and not particularly limiting for the purposes of research.

The Handy Board is capable of running multiple simultaneous processes. This is

achieved by giving each process a slice of the processor’s time in which to run. By

having separate processes managing different behaviors, the Handy Board allows me to

simulate the layered network of Brooks’ model, providing an accurate rendering of

reactive planning. With each parallel process controlling one particular behavior, the

system’s output is a combination of all the behaviors of the system, performing the same

task as Brooks’ layered network.

3.2.3 Modeling the Reactive Planning Model
Having determined the goal of this system, and realizing the restrictions and

capabilities of the Handy Board, the main problem is to determine what behaviors the

system should have. Since our goal is to touch a light source and the only sensors

available to us are touch sensors and light sensors, the behaviors available are fairly

limited. I chose to implement three behaviors that seemed to make the most sense given

the capabilities of the arm I designed.

3.2.3.1 “Blind human” behavior
The first behavior utilizes the touch sensors on the arm. It is to blindly wave the

arm about in all directions and hope that it touches its goal in the process. At first this

does not seem like intelligent behavior, but if you think about it, it is exactly what a

human who cannot see will do. Of course, humans usually have the added benefit of

having a much more refined sense of touch, as well as the abilities to hear and smell.

I have implemented this “blind human” or “waving” behavior into the base joint of

the arm. Every few seconds, the base joint will move one direction or the other. It starts

by going left until it has gone as far as possible. Then it will make its way back around to

17

the right. If it makes it all the way to the right, it reverses and goes back to the left. It

will repeat this process ad infinitum or until a the goal state is achieved.

There is at least one practical problem with this behavior for this robot. The touch

sensor is located only at the very tip of the arm, so that the goal is achieved only if the tip

of the arm touches the goal, which is very unlikely. This is one aspect of how the human

sense of touch is more refined, because, in essence, humans have touch sensors along

every point of their arm and not just at the tip of their index finger. Even if a blind human

wants to touch something with their index finger, they can use the sensory information

from touching something elsewhere along the arm to help guide the index finger to it.

Since that kind of information is not available to the arm, we need some better, more

refined way to locate the object we want to touch.

3.2.3.2 “Seek the light” behavior
The second behavior utilizes the light sensors on the arm and provides us with a

way to locate the light source without simply moving the arm and hoping we just happen

to run across it. The basic behavior is this:

• Take light sensor readings from the left and right light sensors.

• Compare the readings to see which side has brighter light (that is the direction in

which we want to move the arm).

• Move the arm in the direction of stronger light, moving the arm more slowly

when the left and right sensor readings are closer together.

These steps are deceptively simple because of the problems with the light sensors

mentioned above in Section 3.1.2.2. The main problem is that the output values of

different light sensors are different at the same light levels. To standardize the input of

the light sensors, I have hard-coded a simple mathematical procedure for returning the

“percentage” of darkness that the light sensor perceives. The Handy Board is not capable

of type casting operations. Our sensor readouts are integer values, so the percentage

needs to be found with integer calculations only. The calculation consists of simply

18

taking the current sensor readout, multiplying it by 100, and dividing by the “maximum”

value that a sensor ever returns:

I have placed “maximum” and “percentage” in quotation marks because the value need

not represent an absolute maximum for the sensor, but rather is intended to be taken only

as a readout that is typical of very high sensor readings, which correspond to very dark

environments. Thus it is possible for the “percentage” to be over 100. This is not

problematic because these readouts rely only on the relative values of the two sensors,

not on the actual numerical values of the normalized output.

Getting the normalized sensor output is a good first step in using the output of the

light sensors. These sensors, however, have one other annoying characteristic: they do

not change values uniformly. For example, both sensors may give readings between 0

and 5 in bright sunlight and readings between 225 and 245 in a dark room, but in a room

with medium light one may give readings from 40 to 50 and the other from 70 to 80.

However, a reactive planning system needs to be able to deal with uncertainty in its

sensors, including when they drift in calibration (Brooks 17).

To deal with this, my arm performs a light sensor calibration for every complete

left-to-right sweep of the arm, caused by the blind human behavior. If it hasn’t found the

light source after this, there is most likely a problem with the light sensors. This is

important because we don’t want to change the light calibration unless we are certain that

there is a problem with it in the first place.

The question then becomes how to perform a calibration. In my case, the solution

is quite simple because I am using a normalized light sensor reading. Therefore, if I want

to change the light sensor reading, I simply need to modify the calculation of the

normalized value. Since the only parameter to this calculation (Equation 3-1 above) is

the maximum sensor reading, it follows that this is the parameter that should be changed.

The calibration should bring the normalized outputs of the two light sensors closer

together, since the assumption is that one of them is giving a reading that is always

significantly higher than the other, even at the same actual light levels.

Equation 3-1

Value MaximumSensor

100 ReadingSensor Current
 Output Sensor Normalized

×
=

19

Since there is no information to tell which sensor is giving the abnormally high (or

low) reading, the best we can do is to bring the higher value down some, and raise the

lower value. To raise the value of the normalized output, which has an inverse

relationship to the maximum sensor reading parameter, we must decrease the value of the

maximum sensor reading. Conversely, to decrease the value of the normalized output,

the maximum sensor reading must be increased.

Thus, the calibration method is quite simple. When invoked, it takes the current

sensor readings from the two light sensors and compares them. The maximum sensor

reading parameter for the higher-valued sensor is increased by 1, and the maximum

sensor reading parameter for the lower-valued sensor is decreased by 1. For

convenience, both maximum sensor values are initially set to 250, which was

approximately the highest value that either of the sensors I used ever returned.

Using this method of calibration, the normalized outputs slowly converge until a

change in the light level will enable the arm to home in on a light source.

3.2.3.3 “I don’t bend that far” behavior
This behavior is the simplest of the three. It simply watches the touch sensors that

inform us of having a fully bent joint. When one of the sensors is triggered, it causes the

arm to go back in the opposite direction just long enough to turn off the sensor. Making

it move the arm off the sensor was a mostly practical measure. Initially, I thought that

this behavior should just turn off the motors when the sensor was tripped, and that I could

have another behavior move it off the sensor. However, because I wanted to leave this

process running all the time, simply turning off the motors was not good enough. This

process checks the sensors so often that it never lets another process run the motor long

enough to release the sensor. Thus, the process for this behavior needs to move the arm

off the sensor by itself.

3.2.4 The arm’s world
Given that the arm is supposed to be modeling reactive planning, in which no

explicit world representations are kept, I will just briefly mention the arm’s world here.

Essentially the arm can touch items in the area of a half-donut centered around the base

joint. The radius of the inner edge of the donut is the length of the inner segment of the

20

arm; the radius of the outer edge the combined length of both segments of the arm. The

item that we are trying to touch should be located within the area of the half-donut.

3.3 Testing of the Arm
Most of the time spent testing the arm was used to perfect some of the fussy details

about physical design, such as the best angle and placement of the light sensors. Testing

was really a straightforward process of turning on the flashlight, turning on the arm, and

watching it go. It is very difficult to quantify the results of these experiments in any sort

of numerical fashion that is conducive to bar graphs or charts. About the best we can do

is to observe the various behaviors in action and decide whether they are working or not.

3.3.1 Results and Analysis (a.k.a. Behaviors and Misbehaviors)
The arm had good behavior homing in on the light source, once it was within range

of the light sensors, which were annoyingly shortsighted. A nice feature of the way I have

implemented the behaviors is that it is possible to clearly see the effects of each one. It

was easy to see that the light seeking behavior was not doing so well because that

particular behavior controlled only the elbow joint. It was similarly easy to see that the

waving behavior was performing on the base joint as designed, if not always as desired.

Ultimately, one probably would not want to be able to discern exactly which behavior is

responsible for a specific action, but in an initial study of the method, I think it was very

useful to see.

One particular (undesirable) characteristic of the way the behaviors interacted on

the arm was obviously a result of having the behaviors implemented on separate parts,

instead of on all parts. As the waving behavior brought the arm around, it was often the

case that the outer joint was facing the wrong direction, so that the light sensors wouldn’t

pick up the light until after the waving behavior had taken the arm too far past the light to

touch it. If the behaviors had been implemented on all joints, two things could have

worked out better. First, the light seeking behavior would have become more important

than the waving behavior and taken over the operation of the arm when its reading gave a

strong indication of where the light was. Second, if the waving behavior had been

implemented on the outer joint as well as the first, it may not have been pointed the

wrong way in the first place.

21

3.3.2 Possible Improvements
There are several possibilities for improvements to the implementation of reactive

planning on this arm. Unfortunately, time and the available hardware permit did not

permit me to implement any of these possible improvements, mostly because they would

require an extensive amount of rewriting and expanding of the code.

The first observation is that the calibration of the sensors occurs very slowly, which

can mean a long delay before the arm has gone through enough sweeps to get the sensors

giving readouts relatively close to one another. These sweeps of the arm are not

producing what anyone would call intelligent behavior, so we would like to eliminate

them. Eliminating them means that we need to find a way to make the calibration happen

more quickly. This could be accomplished in several ways:

• Perform increment/decrement operations as in the current implementation, but do

it at both extreme bends instead of just at the right one. This would cause

calibration to happen slightly more quickly.

• Modify the maximum sensor values based on how large the difference between

the two sensors is. If the difference is large, adjust the maximum value by a

proportionately large amount; if it is small, adjust it only a little (or maybe not at

all).

• Implement the light sensor calibration as a behavior in its own right, possibly, but

not necessarily, completely independent of the number of sweeps of the arm.

The second type of improvement that I would consider would be to extend the

behaviors to affect both joints instead of only one. Currently, the outer segment

implements only the light seeking behavior, and the base segment implements only the

“random” waving behavior. Ideally, you would have a certain amount of each type of

behavior in both segments. This would primarily be a reprogramming issue that would

require one of two choices.

The first choice is to continue using the current paradigm of controlling individual

behaviors with individual, parallel processes. It would require a lot of inter-process

22

communication through shared variables, which is not easily supported on the Handy

Board (globally accessible variables are easily accessible, but controlling concurrency of

access is not.) The second choice would be to reprogram the behaviors using an entirely

different method to moderate the output. One might have a single process in command of

all others, which would give each behavior a programmer-specified portion of operating

time to give it a set of motor commands, and then combine all those motor commands

into one command. This would require some sort of check to make certain that a

behavior that wanted to go left, and one that wanted to go right couldn’t cancel each other

out indefinitely. The reactive planning model allows this type of checking (Brooks, 18).

 Finally, there is the whole engineering side of the project. There are many

physical changes and additions that could be made to improve the performance of this

robot. For instance, the light sensors right now are attached so that they can only face out

from the end of the arm. They could be utilized much more effectively if they were to be

placed on a rotating axis, so that they could be turned in any direction to look for the

strongest source of light, without moving the arm at all. Another possibility would be the

addition of sensors to the arm. It could be useful, for instance, to add a sensor to each

joint that would tell when it was halfway between the left and right extremes of its

motion. Additional touch sensors on the sides of the arm could tell us when a portion of

the arm other than the sensor at the very tip had run into an object, and possibly help us to

find that object with the tip of the arm more quickly. Additional light sensors that were

designed to have a wide field of view could also be helpful for determining an initial

direction of motion, to get the current light sensors within the range where they function

the best.

4 Conclusion
In this paper, I have given an overview of classical and reactive planning methods,

with special attention to their applications in robotics. I have also given a brief overview

of some systems that attempt to combine reactive and classical planning into a hybrid

system. The research I have done is not extensive enough to be able to say anything for

or against their validity as a general planning method, but many feel that this is the best

approach to take.

23

Finally, the greater portion of this paper has covered my own work on a purely

reactive system controlling a robot arm, a project that I feel has been quite successful.

Working on it has alerted me to a fair number of the difficulties that one encounters with

the implementation of a reactive system. In general, these difficulties tend to center

around sensory input, and in particular, the imperfection of sensory input. The

assumptions of reactive planning, listed in Table 2-1, seem to be perfect, until one starts

to realize the difficulty of implementing a system that is based on them. However, these

assumptions are more realistic for the world in which robots must operate, and so I

strongly believe that work in reactive planning should continue. Though its actual

performance was only fair, my arm is probably the simplest implementation of reactive

planning that can be of any interest. Therefore, this project has convinced me that

reactive planning has the potential to be a viable alternative to the classical planning

methods, particularly when the reactive planning assumptions are more realistic for the

application of the system.

24

Appendix: Interactive C Code Used in the Arm
 The following code is what drives the behavior of the robot arm. It consists of
four files, which are loaded in the order presented here. The file motor.c consists of basic
motor commands and constants which allow consistent reference to whatever touch
sensor or motor port a sensor or motor is connected to on the controller. It also contains
the procedure watch_sensors(), which controls the behavior that watches for the arm’s
joints to be fully bent. The lights.c file defines names for the actual physical port that the
light sensors are connected to and has the routines for getting normalized light sensor
readings and for calibrating the light sensors. The wave.c file contains the routine for
controlling the waving behavior of the base joint. Finally, the main.c file contains the
main function call. It watches the start and stop buttons on the controller, and is
responsible for checking for the goal state and starting and stopping the wave() and
watch_sensors() processes. The main function is also responsible for the light seeking
behavior.

/***/
/* File: motor.c */
/* Author: Dan Churchill */
/* Created: January 21, 2000 */
/* Last Modified: April 12, 2000 */
/* Description: A file of constants and routines to use with */
/* Interactive C in the programming of the handy_board */
/* for use with the robot arm. This file should */
/* contain all necessary control functions for the arm. */
/***/

/* Define some constants based on where the motors & sensors are plugged in */

int m_1 = 1; /* The motor at the base joint */
int s_l1 = 7; /* Sensor to stop counterclockwise rotation */
int s_r1 = 8; /* Sensor to stop clockwise rotation */

int m_2 = 2; /* The motor at the first joint */
int s_l2 = 9; /* Sensor to stop counterclockwise rotation */
int s_r2 = 10; /* Sensor to stop clockwise rotation */

/* Motor speeds */
int fast = 100;
int slow = 40;
int stop = 0;

int s_l1_cnt = 0; /* the number of times we've hit the left sensor (base
joint) */
int s_r1_cnt = 0; /* the number of times we've hit the right sensor (base
joint) */

/* Sensor watching process
 This procedure is intended to be spawned at the beginning of execution
 and be allowed to run until execution stops. It watches the digital
 sensors and stops the appropriate motor when one of them is tripped. It

25

 then moves the arm just enough in the opposite direction to release the
 switch.
*/
void watch_sensors() {
 while(1) {
 if(digital(s_l1)) {
 s_l1_cnt++;
 motor(m_1, stop);
 motor(m_1, slow);
 while(digital(s_l1));
 motor(m_1, stop);
 }
 if(digital(s_r1)) {
 s_r1_cnt++;
 motor(m_1, stop);
 motor(m_1, (0_slow));
 while(digital(s_r1));
 motor(m_1, stop);
 }
 if(digital(s_l2)) {
 motor(m_2, stop);
 motor(m_2, slow);
 while(digital(s_l2));
 motor(m_2, stop);
 }
 if(digital(s_r2)) {
 motor(m_2, stop);
 motor(m_2, (0_slow));
 while(digital(s_r2));
 motor(m_2, stop);
 }
 }
}

/* Extends everything as far to the left as it goes.
 It assumes that watch_sensors is running in a separate process. */
void full_left() {
 /* Start both motors */
 motor(m_1,(0 _ fast));
 motor(m_2,(0 _ fast));

 /* Loop until both sensors are tripped */
 while(!digital(s_l1) || !digital(s_l2));
}

/* Extends everything as far to the right as it goes.
 It assumes that watch_sensors is running in a separate process. */
void full_right() {
 /* Start both motors */
 motor(m_1,slow);
 motor(m_2,fast);

26

 /* Loop until both sensors are tripped */
 while(!digital(s_r1) || !digital(s_r2));
}

/* Starts to bend the specified joint to the left at the specified speed.
 Will return execution to calling procedure immediately. Stopping the
 arm must be done elsewhere. */
void left(int joint, int speed) {
 motor(joint, (0_speed));
}

/* Starts to bend the specified joint to the right at the specified speed.
 Will return execution to calling procedure immediately. Stopping the
 arm must be done elsewhere. */
void right(int joint, int speed) {
 motor(joint, speed);
}

/* Bends the specified joint to the left for the specified number of msecs
 It will NOT check to see if it has hit a sensor. */
void timed_left(int joint, int speed, long time) {
 motor(joint, (0_speed));
 msleep(time);
 motor(joint, stop); /* Stop the motor */
}

/* Bends the specified joint to the right for the specified number of msecs.
 It will NOT check to see if it has hit a sensor. */
void timed_right(int joint, int speed, long time) {
 motor(joint, speed);
 msleep(time);
 motor(joint, stop); /* Stop the motor */
}

27

/***/
/* File: lights.c
/* Author: Dan Churchill
/* Created: March 22, 2000
/* Last Modified: April 12, 2000
/* Description: The light sensor routines and constants.
/***/

int s_ll = 0; /* Left light sensor in analog port 0 */
int s_lr = 1; /* Right light sensor in analog port 1 */

int ll_max = 250; /* Highest reading of left light sensor */
int lr_max = 250; /* Highest reading of right light sensor */

/* A procedure to return normalized light sensor readings
 A positive reading means that there is more light to the right
 of the current sensor position, a negative reading means more
 light to the left of the current sensor position. */
int light_reading() {
 int left_percent = analog(s_ll)*100/ll_max;
 int right_percent = analog(s_lr)*100/lr_max;

 printf("\nL%:%d, R%:%d", left_percent, right_percent);

 return (int)left_percent _ (int)right_percent;
}

/* This procedure is called when the outer arm is stuck at one extreme
 position. The assumption is that one light sensor's percentage is
 significantly higher than the other and needs to have its max increased
 accordingly. This procedure looks at the current difference in the
 sensors. Whichever sensor percentage is higher has its max incremented,
 and whichever sensor percentage is lower has its max decremented. Both
 maximum values are hardcoded to start at 250. */
void calibrateLights() {
 if (light_reading() > 0) { /* the left percent is higher */
 ll_max++;
 tone(440.0,0.2);
 lr_max__;
 tone(360.0,0.2);
 }
 else {
 ll_max__;
 tone(360.0,0.2);
 lr_max++;
 tone(440.0,0.2);
 }
 /* printf("\nllmax: %d, lrmax: %d", ll_max, lr_max); */
}

28

/***/
/* File: wave.c
/* Author: Dan Churchill
/* Created: April 12, 2000
/* Last Modified: April 12, 2000
/* Description: The routine for controlling the "waving" behavior
/* of the robot arm. Assumes that motor.c and lights.c
/* are loaded first.
/***/

void wave() {
 /* Since we default to go left, an increase in the number
 of times we've hit the right indicates a full sweep of the arm
 without luck. Therefore, it is probably the case that we need to
 calibrate the light sensors. The following helps us to remember
 how many sweeps of the arm have been made. After every sweep, we
 will modify the light sensor max values a little bit. Eventually
 the readings should get to a point where the outer segment of the
 arm will move away from a fully bent position. */
 int last_s_r1_cnt = s_r1_cnt;

 while(1) {
 reset_system_time(); /* Set the clock to 0 */

 while(mseconds() < 2500L); /* Give the outer time to find the goal */

 if(s_l1_cnt <= s_r1_cnt) {
 /* we've gone right more than left, so go left this time */
 /* if they're equal, go left first */
 timed_left(m_1, slow, 1000L);

 }
 else {
 /* we've gone left more than right, so go right this time */
 timed_right(m_1, slow, 1000L);
 }

 if(s_r1_cnt > last_s_r1_cnt) {
 calibrateLights();
 last_s_r1_cnt = s_r1_cnt;
 }
 }
}

29

/***/
/* File: main.c
/* Author: Dan Churchill
/* Created: March 22, 2000
/* Last Modified: April 12, 2000
/* Description: The main routines for my honors project.
/* This code assumes the presence of motor.c
/***/

void main() {

 int waveproc; /* the process number of the wave process */
 int running = 0; /* Is the arm active? 1=True 0=False */
 int lights;

 /* start the watch_sensors process
 * _ runs for 1 tick before giving up the processor (default is 5)
 * _ stack size of 50 bytes (default size is 256)
 */
 start_process(watch_sensors(), 1, 50);

 /* Run an infinite loop */
 while(1) {
 if(!running && start_button()) { /* look for a start signal */
 running = 1;

 /* start the wave process which will move our base joint if we
don't
 find our goal */
 waveproc = start_process(wave());

 }
 else if(running && stop_button()) { /* check for a stop signal */
 running = 0;

 /* stop the wave process */
 kill_process(waveproc);
 }
 else if(running) { /* Seek the light */
 if (digital(11)) { /* then we've found the light */
 kill_process(waveproc); /* stop the wave process */
 ao(); /* turn off all of the motors */
 tone(440.0,0.1); msleep(50L); tone(440.0,0.5); /* play some
music */
 printf("\nTa da!"); /* celebrate */
 running = 0; /* rest */
 }
 else {
 /* get light sensor readings */
 lights = light_reading();

 if(lights < 0) {

30

 if(lights > _6 && !digital(s_l2)) left(m_2,20);
 if(lights > _16 && !digital(s_l2)) left(m_2,30);
 if(lights > _31 && !digital(s_l2)) left(m_2,40);
 if(lights < _30 && !digital(s_l2)) left(m_2,50);
 }
 if(lights >= 0) { /* Random decision to default to the
right */
 if(lights < 6 && !digital(s_r2)) right(m_2,20);
 if(lights < 16 && !digital(s_r2)) right(m_2,30);
 if(lights < 31 && !digital(s_r2)) right(m_2,40);
 if(lights > 30 && !digital(s_r2)) right(m_2,50);
 }
 }
 }
 }
}

31

Bibliography

Bresina, John L. “Design of a Reactive System Based on Classical Planning.” Online.

Internet. Available http://ic-www.arc.nasa.gov/ic/projects/xfr/backgound/jb-spring-
93.html.

Brill, F. Z., 1996. “Representation of Local Space in Perception/Action Systems:
Behaving Appropriately in Difficult Situations.” Ph.D. Dissertation. University of
Virginia. Online. Internet. Available
ftp://ftp.cs.virginia.edu/pub/dissertations/9604.pdf.

Brooks, Rodney A. “Intelligence Without Reason.” A.I. Memo. No. 1293. MIT, April
1991.

Brooks, Rodney A. and Stein, Lynn Andrea. “Building Brains for Bodies.” A.I. Memo.
No. 1439. MIT, August 1993.

Drummond, M., Swanson, K., Bresina, J., and Levinson, R. “Reaction First Search.”
Proceedings of IJCAI ’93. Chambery, France: Morgan-Kaufman.1993.

Martin, Fred G. The Handy Board Technical Reference. 1998. Online. Internet.
Available http://el.www.media.mit.edu/projects/handy-board/.

Russell, Stuart J. and Norvig, Peter. Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River, NJ: 1995.

